
IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

.Copyright to IARJSET DOI 10.17148/IARJSET 190

A study on Parallelization of Scientific

Workflows and Integration of Swift and Galaxy

Systems

Dr. M. Suresh Babu
1
, A. Vijay Kumar

2
, M.N.L. Anuradha

3

Professor, Department of CSE, Nalla Malla Reddy Engineering College, Hyderabad
1

Associate Professor, Department of IT, Nalla Malla Reddy Engineering College, Hyderabad
2

Associate Professor, Department of CSE, Vidya Jyothi Institute of Technology, Hyderabad
3

Abstract: Galaxy is a scientific workflow, data integration, and data and analysis persistence and publishing platform

that aims to make computational biology accessible to research scientists that do not have computer

programming experience. Although it was initially developed for genomics research, it is largely domain agnostic and

is now used as a general bioinformatics workflow management system. While user-friendly and intuitive for doing

small to medium-scale computations, it currently has limited support for large-scale parallel and distributed computing.

The Swift parallel scripting framework is capable of composing ordinary applications into parallel scripts that can be

run on multiscale distributed and performance computing platforms. Swift is an implicitly parallel programming

language that allows the writing of scripts that distribute program execution across distributed computing

resources, including clusters, clouds, grids, and super computers. Swift implementations are open source under

the Apache License, version 2.0.In complex distributed environments, and often the user end of the application

lifecycle slows because of the technical complexities brought in by the scale, access methods, and resource

management nuances. Galaxy offers a simple way of designing, composing, executing, reusing, and reproducing

application runs. Integration between the Swift and Galaxy systems can accelerate science as well as bring the

respective user communities together in an interactive, user friendly, parallel and distributed data analysis environment

enabled on a broad range of computational infrastructures.

Keywords: Swift, Galaxy, Big Data, scientific applications.

1. INTRODUCTION

The appearance and effect of huge information are obvious from the constantly expanding development of information

era. Tremendous measures of experimental information lie unexplored even as more calculations and codes are created

to dissect enormous information in novel ways. Computational science today progressively is focalizing to huge

information investigation. Moreover, exploratory applications are extending their spaces, bringing about an increment

in the era and handling of information and in the blossoming requests on computational assets. Electronic coordinated

effort, internet handling, and sharing of uses through entrance based situations have ended up ordinary. Moreover, re-

Permission to make computerized or printed versions of all or a portion of this work for individual or classroom use is

allowed without charge gave that duplicates are not made or conveyed for profit or business point of preference and that

duplicates bear this notification and the full reference on the first page. To duplicate generally, to republish, to present

on servers or on redistribute to records, requires former specific consent and/or an expense. Prerequisites, for example,

investigation of results with visual guides, post processing of execution follows, and tweaked perception have added to

the complexity.

The Galaxy [3] system addresses many of these demands, offering a web-based, interactive platform for data analysis

via reusable and reproducible workflows. While excelling in the usability aspects, the Galaxy environment has however

a limited parallelism capabilities and limited capabilities for interfacing with diverse, scalable computing

infrastructures. A Swift script describes strongly typed data, application components, invocations of applications

components, and the inter-relations in the dataflow between those invocations. The program statements will

automatically run in parallel unless there is a data dependency between them, given sufficient computing resources.

The design of the language guarantees that results of a computation are deterministic, even though the order in which

statements executes may vary. A special file data type is built into Swift and Swift allows command-line programs to

be integrated into a program as typed functions. This allows programmers to write programs that treat command-line

programs and files in the same way as regular functions and variables. A concept of "mapping" is used to store and

https://en.wikipedia.org/wiki/Data_integration
https://en.wikipedia.org/wiki/Digital_preservation
https://en.wikipedia.org/wiki/Computational_biology
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Bioinformatics_workflow_management_systems
https://en.wikipedia.org/wiki/Cluster_(computing)
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/Data_mapping

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

.Copyright to IARJSET DOI 10.17148/IARJSET 191

exchange complex data structures using a file system structure with files and directories. Rapid dispatch of parallel

tasks to a wide range of resources is implemented through a mechanism called "Coasters task dispatch". A Message

Passing Interface based implementation of the language supports very high task execution rates on large clusters and

supercomputers.

The user can draw workflows in which multiple copies of atask are created to operate on multiple inputs at once,

butthis is not a scalable approach. Thus, integration with anexisting highly distributed, portable system is

desirable.Swift [8] is a scripting framework for concurrent executionof ordinary programs. The Swift runtime contains

a powerfulplatform for running user programs on a broad rangeof computational infrastructures, such as clouds, grids,

clusters,and supercomputers, out of the box. Users rapidly prototypecomplex application flows on small, local

resourcesand then deploy them on a diverse range of remote computationsystems. Compact, C-like Swift scripts

providepowerful semantics to exploit nonobvious concurrencies incomplex application flows. The concise and

powerful foreachloop can be used to generate thousands of concurrenttasks with just two lines of code. Thus, highly

concurrentapplications may be constructed in a small amount of scriptlogic without explicitly managing process ids,

batch queues,graph construction, or other tedious details.

Moreover, the Swift framework is specialized to run scientificcomputations on multiple, remote resources while

beingwell interfaced with diverse schedulers, transport protocols,and security measures. Swift handles the data

movementamong distributed file systems and can leverage powerfuldata movement mechanisms. Swift works well with

ssh,PBS, Condor, SLURM, LSF, SGE, Cobalt, and Globus torun applications and with scp, http, ftp, and GridFTP

tomove data.

In this paper, we report on our efforts to extend the Galaxyenvironment with parallel and distributed execution

systemsvia the Swift framework. The result is an integrated environmentwith the same user-friendly Galaxy frontend

andSwift as a backend. We motivate the integration by arguingthat a combination of the best of both worlds will result

in apowerful solution useful to the wider user community (x2).

We support our argument with a description of various integration schemes and resulting benefits (x3). We describe our

experience with some real-world application implementations(x4). We provide perspectives on related systemsby

comparison with similar work (x5). Finally, we concludewith a summary and a description of current and futurework

(x6).

2. MOTIVATION

More and more computational resources are being acquiredby organizations such as universities, national

laboratoriesand research consortia to meet an increasing demand forcomputational and storage capabilities for big data

analytics.Similarly, private owners such as Amazon, Google,and Microsoft have started offering resources in the

formof clouds. Science users are likely to have allocations frommany of these resources with heterogeneous

architectures,accessibility modes, and resource managers. Thus, to effectivelyuse each system in isolation or in

combination, users need to expend additional efforts that can be a significantdistraction and may require special

expertise. Consequently,just the provision of resources is not sufficient. While thedemand for computational resources

is being met, a widegap still exists between effective utilization of these systemsby end-users. Portal-based systems

such as Galaxy specializein providing user-friendly computational analysis environments.Galaxy workflows largely run

on local resources.

More computational assets are being gained by associations, for example, colleges, national labs and examination

consortia to take care of an expanding demand for computational and stockpiling abilities for enormous information

investigation. Also, private proprietors, for example, Amazon, Google, and Microsoft have begun offering assets as

mists. Science clients are liable to have allotments from large portions of these assets with heterogeneous architectures,

openness modes, and asset chiefs. Subsequently, to viably utilize every framework in detachment or in blend, clients

need to consume extra endeavors that can be a huge diversion and may require unique aptitude. Thus, simply the

procurement of assets is not adequate. While the interest for computational assets is being met, a wide crevice still

exists between successful uses of these frameworks by end-clients. Entrance based frameworks, for example, Galaxy

represent considerable authority in giving easy to use computational examination situations. Galaxy work processes

generally keep running on local resources.

Galaxy providers offer their own servers as execution platforms. As the number of users increases however, servers

face spikes in demands. As a result, Galaxy offers a cloud based solution such that users run their own Galaxy servers

in cloud and manage cloud resources (e.g. via ad hoc Condorpools). Although community developments are aimed at

running Galaxy tools on clusters, using them requires special tool configurations and constraints, for example, a shared

file system between Galaxy server and the target cluster.

The following points summarize the motivation behind our conceptualization of the Swift-Galaxy integration.

https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

.Copyright to IARJSET DOI 10.17148/IARJSET 192

 Benefits to users from the Galaxy community in interfacingtheir computations to large-scale parallel systemswill

include remote clusters, clouds, and supercomputers.

 An interactive distributed and parallelcomputing environment resulting in powerful capabilitiesof defining

computations, orchestrating tasks toremote machines and monitoring the executions andresults from a portal-based

platform will give unprecedentedpower to Galaxy users.

 Swift users will be able to easily manage their applicationsand workflows. Swift users can share, reuse, andpublish

their distributed computations with Galaxystyleconventions and practices that are well adaptedby a large user base.

This can result in a wider communityuptake of new computational codes and expansionof existing capabilities.

 The integration will result in a clear separation of concerns.Task coordination and orchestration will behandled by

Galaxy while parallel execution on remotenodes and related data management will be handledby the Swift engine.

Application developments benefitby this clean separation of responsibilities; distributionwill be readily available

without additional configurationon either side.

 Currently, the Galaxy server is operated on a singlecluster at the University of Pennsylvania. With anexpanding user

community and increasing demand forcomputational resources, a broader capacity of resourcesand capability of

execution will help meet this demand.

This will result in a productive cycle where the growingdemand in computation is met by deploying Galaxyservers on

diverse systems, thus reaching wider scienceand engineering domains and resulting in moresuch deployments.

3. INTEGRATION SCHEMES

Both the Swift and Galaxy systems are powerful in differentand complementary aspects, since they were designed

withdifferent goals in mind. Galaxy is a web-based portal forvisual workflow composition, execution, and data

analysis.

Swift is a distributed computing framework for text-basedworkflow composition. The Galaxy environment is easy

toadapt, simple, with limited control over resources. Swift isflexible, implicitly parallel, and robustly interfaced to a

widerange of execution platforms. Clearly they form two differentparadigms of computing for addressing the

challengesfaced in data science.

Swift and Galaxy workflows can interoperate because oftheir similar model of basic interactions with external systems.

Aunit of execution in Galaxy, called a \tool", is definedby an XML document describing the command line,

executable,interpreter to execute the command line, and anyrequired inputs and outputs. The user controls tool

inputsand outputs through the Galaxy workspace interface. Toolsare composed together into workflows described

internally asJSON [1] documents. The Galaxy engine processes the connectionsbetween the tools, identifies

dependencies amongtools, and schedules them for execution accordingly. Workflowexecution results are saved as

reproducible \histories",which may be shared among multiple users.Both Swift and Galaxy operate on executable by

invokingthem via operating system utilities. The overarching goalof our integration is to enable a powerful

environment bycombining the strengths of each of the systems. We aim to achieve this with minimal modification of

either systems. Inother words, we take both systems \as is" and explore waysto integrate them. The basic mechanism

we employ is to useSwift as the internal, low-level execution engine and to useGalaxy as the higher-level, external,

user-visible framework.

Figure 1 : The Structure of Single workflow task.

Figure 1: Swift acting as an interface between locally installed Galaxy tools and remotely located resources. Figure 1

shows a general scheme of Swift's role in extending Galaxy to a wide range of scientific tools and computational

resources. Under this scheme, we are developing modalities through which a variety of Swift-enabled applications will

be readily used as Galaxy tools. The execution starts from a local host as a local Galaxy run. The Galaxy tool invokes

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

.Copyright to IARJSET DOI 10.17148/IARJSET 193

Swift application, using preconfigured application libraries written in Swift. The Swift engine in turn orchestrates and

sends tasks to remote resources. In the rest of this section we describe our experience in integrating the Swift and

Galaxy gateways. We develop different schemes of integration and discuss the benefits of each.

Figure 2: Swift-Galaxy integration view: custom Galaxy tools call Swift.

3.1 Scheme 1: Swift as Galaxy tool

As a first integration scheme, we developed a generic tool with a capability of executing user-provided arbitrary Swift

scripts. The tool is set up such that users can select various configuration parameters from available choices. This

capability allows users to provide arbitrary parameters specific to the application and the execution-specific parameters

such as target compute site.

Figure 2 presents the user view of the Galaxy interface with preset, static Swift-wrapped tools that are available for use

individually or as part of workflows. In addition to the tool's

own configurable properties, Swift-specific properties allow users to choose the remote resource on which to run the

tools with custom configuration such as desired degree of parallelism, and job distribution among sites. With this

scheme users can run individual tools as Swift scripts, as well as stitch tools together running a workflow made up of

other Galaxy tools and Swift tools.

3.2 Scheme 2: Translating Galaxy to Swift

Figure 3: Interoperability between Galaxy workflowsto Swift scripts.

Figure 3 shows a scheme where predefined Galaxy workflowsare transliterated into Swift scripts via a post

processingscript. This development will enable interoperability betweenthe two platforms. Galaxy workflows are

currentlyexpressed as JSON [1] documents linking the Galaxy tools,which are expressed as XML documents. Swift

scripts areexpressed as C-like programs. A two-way translator willenable the workflows to be expressed in either

format thusbeing able to run under two environments. Additionally, thefact that Swift scripts are translated into

intermediate XML representation makes this process easier in that no effort isrequired to write new modules in either of

the workflow engines.

3.3 Scheme 3: Data splitting within tool

Figure 4: Swift wrapper to Galaxy tool.

Input datafrom the Galaxy tool input is split, the base tool isrun under a Swift foreach on each fragment, and theresults

are merged and presented as the Galaxy tooloutput.

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

.Copyright to IARJSET DOI 10.17148/IARJSET 194

Figure 4 shows a scheme of running Galaxy tools wrappedinto a Swift foreach parallel loop. The scheme enables

runningordinary sequential tools that perform homogeneousprocessing on a large dataset to run in parallel on a

splitdataset. The results of individual operations then get mergedand emerge as output for consumption downstream.

Thescheme resembles the popular MapReduce computationalparadigm. The implementation of this scheme is

straightforwardthanks to Swift's indexed arrays that map to files.

The splits and merge on data can be organized into arraysthat map to file fragments and can be processed in the

Swiftscript as variables. For this tool to be successfully applied,the operations on split data must be associative.

4. EXPERIENCE

We describe our experience in running applications encodedas Swift scripts running on large-scale remote resources

fromwithin the Galaxy environment. In our work to date, wehave run Swift-Galaxy applications on two institutional

clustersand one XSEDE system: the University of Chicago Midwayand UC3 clusters and the XSEDE Stampede

cluster.RCC Midway (rcc.uchicago.edu) is the University of ChicagoResearch Computing Center cluster supporting

universitywidehigh-end computational needs. The cluster has multipleresource partitioning dedicated to specialized

computingsuch as HPC, HTC, and GPU computing and runs a SLURMbatch queue scheduler. The UC3 cluster

(uc3.uchicago.edu)at the University of Chicago is an open computing frameworkfor connecting users to shared

distributed high-throughputcomputing resources, both on and off campus. The clusterruns Condor DRM capable of

flexibly extending compute resourcesto the OSG environment. XSEDE (www.xsede.org)is an NSF-funded, national

cyberinfrastructure comprisingmultiple large-scale computation systems on sites across theUnited States. Stampede is

one of the supercomputing systems offered by XSEDE. Stampede runs the SLURM schedulerfor submitting user jobs.

Figure 5 shows a screen capture of an application workspaceinterface. The drop-down dialog allows users to select

resourcesfor a run. The rest of the text dialog provides aninterface to enter application-specific values. Parameter

valuesprovided through this interface are passed to Swift viathe Galaxy tool runner. Galaxy runs the tool that in turn

calls a Swift wrapper that in turn runs the application andrelinquishes control back to Galaxy after the execution

iscompleted. Figure 6 shows a screen capture of a post executionview for a Swift tool. The plot shows the number

ofparallel active jobs during the run of a 2000-task applicationon Midway. More than 120 active parallel jobs run at

onceover a period of 55 seconds to complete the 2,000 tasks. Onthe right pane is the history of this run captured by

Galaxythat shows the standard output and an HTML page that haslinks to the results (not shown in figure) of the

execution.A brief description of applications enabled and ongoing workwith the Swift-Galaxy interface follows.

Power Grid Analysis.

Large-scale analysis of power grid quantities is emerging asan important engineering application of national

interest.Applications have many stakeholders, including the government,power companies, ISOs, and domestic and

industrialconsumers. In this work we enable an application concerninginference analysis of stochastic unit commitment

models.

The application involves hierarchical stochastic computationsover a range of samples and batches. The code inListing 1

shows a Swift script representation of the core application logic. A three-level-deep nested foreach loop generates about

100K concurrent tasks for a sample size of 5and a batch comprising sizes (10, 20, and 30). Currently weimplement the

application under Scheme 1 described aboverunning on institutional and XSEDE resources.

1 foreach S, idxs in nS{

2 o = gensample(wind_data);

3 foreach B, idxb in [10:30:10]{

4 foreach k in [0: B]{

5 o = gensample (S, wind_data);

6 obj_out_l[idxs][idxb][k] = ampl_app_L (params);

7 o = gensample (S, wind_data);

8 obj_out_u[idxs][idxb][k] = ampl_app_U (params);

9 }}}

Listing 1: Swift code for power grid analysis application.Climate Models.

The Decision Support System for Agrotechnology Transfer(DSSAT) application analyzes the effects of climate

changeon agricultural production [4]. Projections of crop yields atregional scales are carried out by running simulation

ensemblestudies on available datasets of land cover, soil, weather,management, and climate. The computational

frameworkstarts with the DSSAT crop systems model and evaluates this model in parallel. One study involves analysis

of climateimpact for a single crop (maize) across the conterminousUSA (120K cells) with daily weather data and

climatemodel output spanning 120 years (1981-2100) and 16 differentconfigurations of fertilizer, irrigation, and

cultivar choice.

http://www.xsede.org/

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

.Copyright to IARJSET DOI 10.17148/IARJSET 195

Currently, the climate model runs as a single, generic Galaxytool wrapped via a shell script and callable by Galaxy as

atool.

Genomics.

A large section of the Galaxy community is geared towardgenomics data analysis, mainly next-generation

sequencingdata (NGS). Many tools working on all aspects of genomicsanalysis are currently used, and many new tools

are beingdeveloped. The analysis of NGS data can be partitioned into a series of steps common among the

multipleNGS applications (i.e., transcriptome, whole-exome, wholegenome). One of the most popular applications for

accuratevariant calling of exome data is the Genome AnalysisToolkit (GATK) from the Broad Institute [2], which

providesa best practices pipeline with optimal parameters ineach step of the process. The pipeline includes running

anumber of GATK applications that can be computationallydemanding and in some cases can be parallelized. As

anongoing development, a Swift-enabled GATK best practicespipeline is being integrated into Galaxy. We are

currentlyporting the application using a combination of Scheme 1and Scheme 3 described in x3.The Unified Genotyper

(UG) tool analyzes multiple chromosomes.

By splitting the analysis by chromosome, we intendto run foreach loop over chromosomes. The workflowconsists of

123 input human genome files containing 23 chromosomeseach. Thus UG can be run 23 times for

individualchromosomes.

5. RELATED WORK

In this section, we briefly present our perspectives on relatedwork. Many scientific gateways and portals are in use

globally.Historically, problem-solving environments (PSEs) canbe considered as ancestors of portal-based science

gateways.With the advent of fast networks and sophisticated web programmingtechnologies, PSEs have evolved into

portals.The driving force behind many separate developments canbe attributed to user communities bonded by a

scientificdomain or adapted to a particular set of tools.

The GPSI [7] portal is a prototype portal using Swift as itsworkflow engine. A Python-driven web environment allows

users to submit their Swift scripts to distributed resourcesand to manage their data from within the web-based

environment.Integrationof the Vbrowser portal with the MOTEUR workflowengine [6] is another example of similar

work gearedtoward combining network-based portals with a task orchestrationengine. The target execution

infrastructure in thiscase is the European Grid environment, and the target communityis the medical imaging

community. Nanohub [5] isanother recent portal focused on the nanotechnology community.

6. CONCLUSIONS AND FUTURE WORK

In this paper we motivate the benefits of integrating portalbasedexecution frameworks with a large-scale parallel

programmingframework. We demonstrate the integration withGalaxy as a representative of the former and Swift of

thelatter.

The following points summarize the features of Swift integrationwith Galaxy:

 A generic Galaxy tool with the ability to run arbitrarySwift scripts from within a Galaxy interface.

 Static application tools for special-purpose executionwith flexibility of user-provided application parameters,and

execution site.

 Capability to arbitrarily select remote execution sitesfrom a drop-down list of the tool's visual representation.

 Post execution analysis of runs and plots of job completionrate and parallel tasks.

 Capability to bring results into the Galaxy dataset systemfor reuse and publishing.

 The following activities summarize our future work.

 Extending and combining of the integration schemesinto a toolkit capable of encapsulating arbitrary Galaxytools

into Swift.

 Finer integration of external Swift data and managedGalaxy dataset system.

 Deeper integration of the Swift engine into the Galaxyframework. This will enable Galaxy workflows to

beorchestrated as a Swift execution, retaining the Galaxyvisual framework.

REFERENCES

1. D. Crockford. RFC 4627: The application/json mediatype for JavaScript Object Notation (JSON). 2006.
2. GATK Best Practices. [2] www.broadinstitute.org/gatk/guide/best-practices.

3. M.Hategan. J.Woznaik and K.Maheswari, Coasters uniform resource provisioning and access for scientific computing on clouds and grids.In

Proc Utility and Cloud computing 2011.

http://www.broadinstitute.org/gatk/guide/best-practices

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

.Copyright to IARJSET DOI 10.17148/IARJSET 196

4. K.Maheshwari, K.Birman, J.Woznaik and D.V.Zandt. Evaluating cloud computing techniques for smart power grid design using parallel

scripting.In cluster, cloud and grid computing (CCGrid), 2013 13th IEEE/ACM International Symposium on, 2013.
5. M. Stonebraker and J. Robertson, “Big data is ’buzzword du jour;’ cs academics ’have the best job’,”Commun. ACM, vol. 56, no. 9, pp. 10–11,

2013.

6. M. Stonebraker and J. Hong, “Researchers’ big data crisis; understanding design and functionality,”Commun.ACM, vol. 55, no. 2, pp. 10–11,
2012.

7. R. Ramakrishnan, “Cap and cloud data management,” IEEE Computer, vol. 45, no. 2, pp. 43–49, 2012.

8. J. Shen, J. Fang, H. Sips, and A. L. Varbanescu, “Performance Traps in OpenCL for CPUs,” in PDP 2013, February 2013, pp. 38–45.
9. J. Shen, A. L. Varbanescu, H. J. Sips, M. Arntzen, and D. G. Simons, “Glinda: a framework foraccelerating imbalanced applications on

heterogeneous platforms – in conference computing frontiers – 2013 Page 14.

BIOGRAPHIES

Dr. M. Suresh Babu, received Post graduatione from Osmania University, M.Phil (Computer

Science) from Bharathiar University and PhD (Computer Science & Technology) from Sri

Krishnadevaraya University. He is currently working as Professor in Department of Computer

Science at NallaMalla Reddy Engineering College. He has published more than 80 publications in

the areas of Database, Semantic, Data Mining, Cloud Computing and Network Security. He is

associated with various Professional bodies like ISTE, ISCA, IAEngg, IACSIT, UACEE, SOULS,

CSTA, SDIWC and EAI. He is editorial board member, reviewer for more than 10 International

journals.

A. Vijaya Kumar completed Post Graduation from HCU and M.Tech from Sathyabama University

in 2007. His Research interests include Data Mining, MANETs, and cloud computing. Presently

he is working as an Associate Professor in the IT Department in NallaMalla Reddy Engineering.

College, Hyderabad. He has published research papers in various National, International

conferences and Journals. He is a life member of various professional societies like ISTE, IAEngg,

CSTA, UACEE, SDIWC, IACSIT.

